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The approximation of electron densities 
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This paper  discusses the approximate representation of the electron density 
produced by an ab initio calculation. A linear combination of Gaussians is 
fitted to the density by minimizing a functional which is the consequent error 
in field-energy. The practical implementat ion of the procedure, following a 
Gaussian 80 calculation, is described and some of the complications are 
analysed. 
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1. Introduction 

The electron density, in the form in which it emerges from an ab initio calculation, 
is very difficult to comprehend and interpret. Often the Mulliken populations are 
also listed as the only aid to interpretation but the use of  these has been frequently 
criticised because of the simple, but arbitrary way in which the overlap density 
is equally allocated between the atoms. There is a clear need for other quantities 
which can express features of  the density in an unambiguous and useful way. 

This paper  follows an earlier one [1] in which the electron density was approxi- 
mated using spherical Gaussians centered on the nuclei. The results showed that 
such calculations were feasible and that the approximate  densities were sufficiently 
accurate for various purposes. In this paper  the limitation to functions centered 
on the nuclei will be lifted so that more flexible trial functions can be used. The 
restriction to spherical Gaussians remains but is not of significance since 
Gaussians on different centers can represent the lack of spherical symmetry just 
as effectively as using higher angle-dependent Gaussians. From the Gaussian 
densities, point charge models of  molecules can be readily deduced. 
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In the following paper [2], results are given of calculations on the water molecule 
using the techniques described here. 

The idea of  using spherical Gaussians to represent the electron density has been 
suggested by Rys et al. [3] and by Yanez et al. [4]. They have adopted the criterion 
of a least-squares fit to the calculated electron density itself but their Gaussians 
are constrained by the need to fit first the different atoms. This limits the quality 
of the fit. 

There are many methods now in use to calculate point charge models of molecules. 
Momany [5], Cox and Williams [6] and Ray et al. [7], and others, use a 
least-squares fitting over a finite grid to fit the molecular electrostatic potential 
with point charge potentials. Since the point charge potentials diverge, this process 
is strongly dependent  on the choice of grid. Brobjer and Murrell [8] prefer to 
determine the positions and charges of their point charge models by fitting the 
molecular multipole moments (experimental, where possible, otherwise calcu- 
lated). They argue that their several-center models are superior to one-center 
multipole models. On the other hand, Sokalski and Poirier [9] use the atomic 
orbitals of  each atom's basis set to define local multipole moments and so 
generate atom-based multipole models. Bonaccorsi et al. [10], Dovesi et al. [11] 
use localized orbitals to define local densities and their centers of charge to define 
locations. This results in models having point charges not restricted to the nuclei. 

The fitting process described here differs from all of these in that it uses an energy 
as a fitting criterion. This means that the results will be more suitable for 
calculating energy-type properties. It also derives point charge models by shrink- 
ing Gaussians to delta functions and so avoids the serious problems of divergence 
which affect all attempts to fit point charges directly to the electron density. 

2. The form of the electron density 

It is convenient to begin this discussion with an analysis of the electron density 
as produced in present-day packages. These employ basis sets already determined 
by previous research as of  good quality for the atomic orbital concerned. Each 
of these is defined using a number of"primit ive Gaussians" to represent its radial 
dependence. The use of Gaussians ensures that all the integrals in the calculation 
can be evaluated to any desired accuracy. The electron density is a quadratic 
form in the basis and, hence, in the primitive Gaussians viz. 

p( r) = Y~ p,,@,( r)~o,( r), (1) 
s t  

where Pst is the element of the density matrix and ~s(r) a primitive Gaussian. 
This structure remains the same whether or not the calculation includes configur- 
ation interaction. 

If  ~s(r) is a normalized spherical Gaussian orbital at the point A,: 

q~s( r) = (2aJ1r)  3/2 exp [ - a s ( r - A , )  2] (2) 
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then the product of two orbitals is a spherical Gaussian density at the point 

A~, = (asA~ + a , A , ) / ( G  + at). (3) 

The relation can be written as 

~ ,  = Ss,G~, (4) 

where S~, is the overlap integral and Gs, a normalized spherical Gaussian density 
with exponent 

a ~ t = G + a t  (5) 

and center at A~, 

Gst = ( ast/'lr ) 3/2 exp [ - a s , (  r -  As,)2]. (6) 

This was first pointed out by Boys [ 12] and is the basis of his integration techniques 
for these functions. It is also the basis of the point charge models discussed by 
Tait and Hall [13]. Boys also showed that the angular factors can be treated 
simply by differentiating the spherical functions with respect to their positions. 
The extension of this to point charge models was given by Martin and Hall [14]. 

Since the product of two primitive Gaussians on the same center is a Gaussian 
density the exponent of which is the sum of their exponents, n primitive Gaussians 
on a center will give, in general, n ( n  + 1)/2 distinct Gaussian densities there. For 
the water molecule, using a STO-6G wavefunction, each H will have 21 
Gaussian densities and the O has 78 densities. When there are two centers the 
overlap densities will be at different points along the line joining them so that, 
for water, there will be 36 densities along HH but 6 of these are at the mid-point; 
along OH there will be 72 densities. If one orbital is of p type then the products 
will all be of p type but the centers will be the same. For two p functions the 
product will include both spherical and d type Gaussians. Thus the density can 
be re-written as 

p = • p~,S,,G,, (7) 
Xt 

where Q ,  may now include some higher Gaussians or groups of spherical 
Gaussians (lobe functions) to simulate them. 

The density is then exactly expressible as a linear sum of Gaussians on many 
centers along the internuclear axes. Some may have angular factors. This form 
for the density is not a practical one for present purposes since the number of 
charges and centers is excessively large. It does show, however, that the fitting 
process is really an economization of the density. The optimization process picks 
out the major terms and locates charge where they are. The many small terms 
are grouped together and represented by diffuse Gaussians. As the process 
proceeds, with more fitting functions, there will be Gaussians in the original p 
competing for an exact fit and, as the trial function p* comes near to one or 
other of these, the functional may have a local minimum. This is especially likely 
to occur during the optimization of a Gaussian in a bond since p has so many 
Gaussian densities there. The process may then show many local minima before 
the global minimum is found. 
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3. Optimization 

The criterion for the fitting which was previously used was the minimizing of the 
functional which is the integral of the square of the difference in electric fields 
and can be written as 

U=�89 1---[p(2)-p*(2)]dTld~2 (8) 
r 1 2  

where p is the electron density and p* the approximate one. The best fit for a 
given form of trial density is found by minimizing U with respect to the parameters 
in p*. Since U is non-negative the size of U is a good measure of the accuracy 
of the fitting. It is convenient to measure both p and p* in electron charges rather 
than proton charges. 

The approximation used here is 

o* = E qtGt (9) 
t 

where Gt is a Gaussian density, as (6), but with arbitrary exponent and position, 
while q, represents its charge, and the sum is written as a single sum. U is, 
therefore, a quadratic form in terms of the charges q~: 

U= Uo-Y~ qtUt +�89 • qsUstq,, (10) 
t S t  

where 

Uo=�89 f f p(1)p(2)/ra2d~'1d'c2 (11) 

Ut = f f Gt(1)p(2)/r12 d'rl d'r 2 (12) 

Ust = I I  Q(1)Gt(2)/r12drld~2. (13) 

There are two stages in the optimization. The charges qt are found first. The 
functional U is replaced by W 

so that the total charge Q can be constrained to equal the total number of electrons 

Q = Z qt (15) 
t 

The optimal charges satisfy 

o W/oq, = - u ,  + 2 qsUs,- a = 0  (16) 
s 

so that 

q,=E N~t(U,+ A) (17) 
t 
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where 

N,,~U,, = 6u, (18) 
s 

and A is fixed by the constraint (15) 

A = ( Q - ~  N~tUt)/~.N,,. (19) 

Since the equations (18) are linear their solution is normally unique and results 
in a numerical value of W. The second stage in the optimization is the variation 
of  the exponents and positions of the Gaussians. This is a non-linear process 
and much more laborious. In this program a quasi-Newton routine was used. It 
was obtained as a standard package from the Kyoto University subprogram 
library. The variables optimized were functions of the exponents and positions 
rather than these variables themselves. This enabled the parameters of  Gaussians 
on different centers to be kept the same. Each time the minimization routine 
changed the values of  the exponents or the positions a new set of optimized 
charges was calculated. 

There are many ways to constrain a function to move along a line between two 
centers. Two of  these were used here viz. 

a) L = ( x A + B ) / ( x + I )  (20) 

b) L=xA+(1-x)B. (21) 

Frequently a) gave better results than b) although it allows L to approach A only 
by giving large values to x. 

The exponents of the Gaussians must all remain positive and those on the same 
center must be unequal (otherwise U becomes singular). To enforce the first of 
these constraints the value of W was made large and positive if the sub-program 
called for a negative exponent. For the second, W was similarly enlarged when 
e, where 

e= E (Us,N,,+ N,U,u)-2Q, (22) 
$ u t  

became greater than 1 0  - 9  . 

4. Integral evaluation 

In the Gaussian 80 program [15], the molecular orbitals are expressed as a sum 
over s, p, d and f type atomic orbitals, the radial parts of which are linear 
combinations of primitive Gaussians, on the nuclear centers. All of the integral 
evaluations, which are required to find U, can be performed by the same integral 
subroutines which are used to evaluate the two-electron part of  the Fock matrix 
because p* is a linear sum of s-type Gaussians. Extra routines to assemble these 
integrals to find the Coulomb energy were written. This involved multiplying 
integrals by the correct pair of elements of the density matrix and adding. 



68 c.M. Smith and G. G. Hall 

Similarly, routines were written to find Ut and Ust using the same integral routines. 
The Gaussians densities in p*, Eq. (9), were written as the product of two square 
roots because the Gaussian 80 integral routines expect to treat integrals having 
four orbitals. Ut is a sum of products of an integral, involving p and G,, and an 
element of  the density matrix, while U,t is an integral involving only G~ and Gt. 
In this way a routine can be written to find U for any positive set of exponents 
and any change of  position of the functions in p*. 

5. Calculation strategy 

The input for the initial values of the non-linear parameters and for the control 
of the program was given in the form of  free format code-words. This made it 
possible to run several types of fitting of the same original density in one program 
run. If desired, some of the parameters obtained in one fitting can be the initial 
values for the next calculation. Thus, from an initial very constrained calculation, 
fittings with fewer constraints can be obtained in stages so that the non-linear 
optimization process remains stable. The calculations on water, for example, 
which are reported in the following paper [2] started by fixing all the Gaussians 
on the nuclei and then allowed an O function to move from the nucleus in two 
directions to become the lone pair functions. Later one of each of  the hydrogen 
functions was allowed to move along its OH bond to represent the bond density. 
This procedure seems to give stable results. 

When the number of non-linear parameters becomes large the functional W 
begins to become fiat and to show local minima in the manner discussed above. 
Attempts were made to deal with this by rescaling the variables so that W became 
less fiat but no uniform procedure was found to be generally successful. 

6. Negative charges 

In some fittings some of  the charges were found to be negative (corresponding 
to a positive contribution to the electron density). There seemed to be three 
situations which produced this. 

a) In some early test runs using a STO-3G wavefunction it was found, when p* 
contained more than 3 O Gaussians, that pairs of functions with almost the same 
exponent but opposite charges were obtained. This is similar to the effect of a 
differentiation of the Gaussian with respect to the exponent and such functions 
could be helpful in describing the L shell. Since this occurred only for simple 
wavefunctions it suggests that the fitting has gone beyond what such a simple 
wavefunction justifies. 

b) During the STO-6G calculations, when there were three Gaussians on O and 
two functions for the lone pairs, the minimized exponent for the lone pair function 
was about 1.4, while the smallest of those for the O was 0.2. If, however, the 
calculation is started off with the lone pair exponent less than those for O then 
a local minimum is found and the most diffuse O function has a negative 
coefficient. In this calculation the optimization finds it difficult to enter a region 
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in which the exponents swap sizes. The negative coefficient shows the program 
trying to correct for the overdiffuse lone pair by removing charge from the O. 
This observation reinforces the strategic comments above about allowing the 
optimization to proceed in stages with the exponents changing modestly at each 
stage. The reluctance of the program to change the order of exponents may have 
something to do with the conditioning of the matrix U~t but this has not been 
analysed. 

c) In the more accurate calculations with many Gaussians it is sometimes found 
that one function may change sign. It is often unstable and changes sign several 
times during the calculations. This is not very significant. It represents a small 
adjustment in the density in one region to compensate for too much density put 
there by another function. This can occur just as, in the exact expansion, a term 
with negative overlap charge can occur. 

7. Conclusion 

A program has been implemented for the fitting of the electron density by a 
linear combination of  Gaussians at arbitrary centers. The difficulties in the 
programming and in the control of the computing have been discussed. The 
success of the result depends on having an optimization routine which can control 
nonlinear optimization involving a shallow minimum and, possibly, several local 
minima. No artificial constraints on the functions are needed to make the process 
converge but some of the functions produced are diffuse and cannot be interpreted 
as localized to one atom. 
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